Analytical Valuation of Asian Options with Continuously Paying Dividends in Jump-Diffusion Models

نویسنده

  • Hsien-Jen Lin
چکیده

We consider the problem of valuation of certain Asian options in the geometric jump-diffusion models with continuously dividend-paying assets. With the sources of diffusion risks and two primitive tradeable assets, the market in this model is, in general, incomplete, and so, there are more than one equivalent martingale measures and no-arbitrage prices. For this jump-diffusion model, we adopt the minimal martingale measure as the risk-neutral pricing measure for option valuation in a dynamicallyiincomplete market. A partial integro-differential equation satisfied by the no-arbitrage price of an Asian option is obtained by change of numeraire technique under the minimal martingale measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing Options in Jump Diffusion Models Using Mellin Transforms

This paper is concerned with the valuation of options in jump diffusion models. The partial integro-differential equation (PIDE) inherent in the pricing problem is solved by using the Mellin integral transform. The solution is a single integral expression independent of the distribution of the jump size. We also derive analytical expressions for the Greeks. The results are implemented and compa...

متن کامل

General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options

We develop accurate analytical pricing formulae for discretely and continuously monitored arithmetic Asian options under general stochastic asset models, including exponential Lévy models, stochastic volatility models, and the constant elasticity of variance diffusion. The payoff of the arithmetic Asian option depends on the arithmetic average price of the underlying asset monitored over a pre-...

متن کامل

Closed formulas for the price and sensitivities of European options under a double exponential jump diffusion model

We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...

متن کامل

Option Valuation in Jump-diffusion Models using the Exponential Runge-Kutta Methods

In this paper, we consider exponential Runge-Kutta methods for the numerical pricing of options. The methods are shown to be an alternative to other existing procedures for the numerical valuation of jump -diffusion models. We show that exponential Runge-Kutta methods give unconditional second order accuracy for European call options under Merton's jump -diffusion model with constant coefficien...

متن کامل

Jump-Diffusion Models for Asset Pricing in Financial Engineering

In this survey we shall focus on the following issues related to jump-diffusion models for asset pricing in financial engineering. (1) The controversy over tailweight of distributions. (2) Identifying a risk-neutral pricing measure by using the rational expectations equilibrium. (3) Using Laplace transforms to pricing options, including European call/put options, path-dependent options, such as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013